
2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

10-6

10-5

10-4

10-3

σ
 (

S
/c

m
)

1000/T (K-1)

xPEO

Dense Plate

70wt.% dispersed

Composite Pellet
Thin Film Composite, 
Plasticized

Sintered Pellet

Composite Electrolyte to Stabilize Metallic Lithium Anodes
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Gel Composite Electrolyte - An Effective Way to Utilize 

Ceramic Fillers in Lithium Batteries

Crosslinkable PEO-based Gel Composite Electrolytes – components and morphology

Project ID 
bat273

• Timeline

– Start: October 2014

• Budget

– $400k FY20

– $400k FY21

• Technical barriers

– Energy density  (500-700 Wh/kg)

– Cycle life, 3000 to 5000 deep 
discharge cycles 

– Safety

• Partners and collaborators

– Oak Ridge National Laboratory (lead)

– Collaborators:  

– ORNL collaborators – A. Westover, R. 
Sacci, F. Delnick

– Ohara Corporation, CA

– J. Schaefer, Univ Notre Dame

– K. Hatzell, Vanderbilt Univ.

– MERF for LLZO powders

Relevance and impact to VTO mission:

• Multi-year program plan identifies the Li metal anode and its poor 

cycling as the fundamental problem for very high energy Li batteries.  

• Li metal confined and protected a solid electrolyte is the best route to 

safety & efficiency. 

• Success of our composite electrolyte will enable:

Li-NMC and Li-S and Li-Air to meet the technical and cost objectives.

Overview – Composite Electrolytes to Stabilize Li Metal Anode

Milestones - FY20-21

Milestones:   FY20-FY21 Target: Status:

Investigate the trade-off between Li+ transference number and ionic conductivity 

of the gel composite electrolytes, and optimize it.  
Q3 FY20

Fabricate full batteries using NMC cathode, composite electrolyte, and Li-metal 

anode. Identify cell failure mode. 
Q4 FY20

Sinter and characterize porous LLZO network by different processes. (Room 
temperature conductivity > 10-5 S/cm)

Q1 FY21 80% complete

Compare polymer-LLZO ceramic composites with 4 different ceramic loadings. 

(Room temperature conductivity > 10-5 S/cm; Interfacial resistance with Li < 100 

Ohm/cm2)

Q2 FY21 80% complete

Elucidate the Li ion path through at least two distinct polymer-ceramic 

composites 
Q3 FY21

50% complete

Measure Li+ transference number with at least two different anion receptors. Q4 FY21 50% complete

Make a robust, highly conductive, high cation transference number composite 

using LLZO based ceramics. Demonstrate cyclability with Li//Li symmetrical cells 

and NMC full cells. 

Annual 
FY21

On track
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A Three-Dimensional Interconnected Polymer/Ceramic 

Composite as a Thin Film Solid Electrolyte

Ceramic: LICGC® powder

High Li+ conducting ceramic 

(10-4 S/cm room temperature)
Air stable,  Water resistant

Average size ~1 µm

NOT stable with Li metal

Li1+x+yAlxTi2-xSiyP3-yO12

PEGDME
LiTFSI

n = 500;
y ≈ 12.5, 

(x+z) ≈ 6 Jeffamine

Polymer: xPEO

• Sintered pellet and composite 
pellet: similar conductivity→ ion 
transport through the ceramic.

• Plasticizer (TEGDME) effectively 
reduced the interfacial resistance 
between polymer surface layer and 
the composite.

Understanding Transport in Composite 

Electrolytes Using Numerical Modeling

• A gel composite electrolyte is fabricated, using crosslinked PEO matrix, LiTFSI salt, TEGDME plasticizer and doped-

lithium aluminum titanium phosphate particles (LICGC™) fillers. 

• The incorporation of the LICGC particles into the membrane improves its handleability – more flexible, less sticky, can 

be made thinner. 

Conductivity: in the dry state, composites present decreased conductivity; in the gel 
state, composite with 50 dry wt% LICGC has similar overall conductivity and 2-fold 
increase in Li+ conductivity 

Li symmetrical cell cycling: gel composite electrolyte has lower overpotential, lower 
interfacial impedance and quickly reaches steady state 

Full cell performance at room temperature Li+ transference 
number

Underpinnings of the gel composite electrolyte’s superior performance

Chen, X. C.*, et. al. Journal of Materials Chemistry A, 2021, 9, 6555-6566

• LICGCTM serves as an anion receptor and 

immobilizes TFSI−, leading to significantly 

increased tLi+; 

• Simultaneously, it promotes Li+ dissociation and 

enhances Li+ mobility due to increased plasticizer 

to Li+ ratio. 

• The simultaneous Li+ transport promotion and 

TFSI− immobilization leads to greatly improved 

cell cycling performance. 

Technical accomplishment: Overcoming ceramic interparticle resistance: 
the fabrication of a 3-dimensional interconnected composite

Ionic transport path in composite → through both the ceramic and the 
gel polymer

10 μm

Composite Film

Palmer, M. J.; Kalnaus, S.*; Dudney, N. J,; Chen, X. C.*, et. al. Energy Storage Materials 2020, 26, 242-249.

Technical accomplishment: Li symmetrical cell and full cell fabrication 
using the 3-dimensional interconnected composite

50 µm
Surface layer at the edge was 
completely sanded off

With polymer surface 
layer
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Summary and Future Work: CPE of new 

materials/processing → path to SSB

10 μm

Composite

10 μm

composite membrane

Gel composite 
electrolyte

Li-free anode to 
achieve max 

energy density

Highly conductive 
sintered thin-film CPE

Focus on high energy density. Thin Li 
and electrolytes with good interfaces.

Future work
• Explore different 

anion receptors;
• Studying Li 

plating/stripping 
morphology 
through 
heterogeneous 
electrolyte

Future work
• replace the LICGC 

ceramic to LLZO
• Optimize the 

integration with 
cathode

robust & conductive

Future work
• Processing to 

form/integrate 
ultra thin Li 

Our approach:   composite electrolytes → new materials →
practical processing → interfaces → cells
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Li (cycled)Objectives – Study, determine

Composite solid electrolytes –
thin, robust, conductive
• Materials (polymer, ceramic)
• Structure
• Processing

Interfaces – stable, conductive
• Li – no reactions, no physical isolation, 

no dendrites
• HE/HV cathode

Full cells
• Cycle life
• Degradation processes

Cathode 
composite

Solid electrolyte

Li (cycled)

Li (excess)

Current collector

Current collector

Model describes diffusion, migration and LICGC/PE interface 

Effective interface layer of 

thickness dl and conductivity 𝜎𝑙

LICGC

PE
Nernst-Plank equations
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Presence of single ion conductor reduces concentration gradient 
under 10 mV applied potential

LICGC CPE

Mid-section concentration profiles

2D normalized concentration profile in PE 

Chronoamperometry to determine steady state current and 
transient behavior

Steady state 

current in CPE

Major Accomplishments

• Developed an aqueous spray coating technique as a facile fabrication 
method for thin composite electrolyte films with high ceramic loadings. (J. Power 
Sources 2018, 390, 153-164)

• Quantified the interfacial resistance for ion transport between model polymer 

and ceramic electrolyte (1.2 KΩ∙cm2); Minimized the interfacial resistance (near 
zero). (ACS Energy Letters 2019, 4, 1080-1085)

• Developed a thin three dimensionally interconnected composite film with fast 

ion conducting path through the ceramic (ASR=70 Ω) and improved 
mechanical strength. (Energy Storage Materials 2020, 26, 242-249.)

• Fabricated a gel composite electrolyte with greatly improved cycling 
performance. The efficacy of ceramic fillers is discussed in depth. (Journal of 
Materials Chemistry A, 2021, 9, 6555-6566)

• Used numerical modeling to understand concentration gradients in composite 

electrolyte with layered geometry and dispersed geometry. 

Li//NMC622 cycling at 70 °C, ~50:50 TEGDME:polymer (no liquid electrolyte)
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